Aufgabe 1

(10 Punkte)

Welche der folgenden Aussagen sind richtig?

- (a) Richtig, die Varianz ist eine Summe quadratischer Größen.
- (b) Falsch, die Abweichung ordinaler Merkmale vom Median ist nicht definiert also auch keine mittlere Abweichung.
- (c) Richtig, die untersuchten Merkmale besitzen keine Lebensdauer.
- (d) Falsch, der Modus ist die am häufigsten in einer Stichprobe auftretende Merkmalsausprägung.
- (e) Richtig, der Quantilsabstand steigt mit der Breite der Verteilung an.

Aufgabe 2

(25 Punkte)

Die benötigten Daten zur Aufgabe:

Zahl der Tabellen x_i	Tage früher	Tage jetzt	kumuliert früher	kumuliert jetzt
1	60	5	60	5
2	160	10	220	15
3	110	25	330	40
4	0	20	330	60
5	60	0	390	60
6	50	0	440	60
8	0	40	440	100

a) Die Aussage ist: Lohnt sich der Computer (ist die Produktivität angestiegen?).

b) Benötigt werden das Arithmetische Mittel und der Median:

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^m h_i x_i \\ \bar{x} &= \frac{1}{440} \left(60 + 2 \cdot 160 + 3 \cdot 110 + 4 \cdot 0 + 5 \cdot 60 + 6 \cdot 50 + 8 \cdot 0 \right) = 2,977 \text{ ohne Computer,} \\ \bar{x} &= \frac{1}{100} \left(5 + 2 \cdot 10 + 3 \cdot 25 + 4 \cdot 20 + 5 \cdot 0 + 6 \cdot 0 + 8 \cdot 40 \right) = 5 \text{ mit Computer.} \end{split}$$

Der Median lässt sich aus den Daten in der Tabelle ablesen, für die Daten ohne Computer

$$\bar{x}_Z = \frac{x_{220} + x_{221}}{2} = 2, 5,$$

nach der Einführung des Computers

$$\bar{x}_Z = \frac{x_{50} + x_{51}}{2} = 4.$$

Die mittlere absolute Abweichung vom arithmetischen Mittel ist

$$\begin{split} d_{\bar{x}} &= \frac{1}{n} \sum_{i=1}^m h_i(x_i - \bar{x}), \\ &= 1,25 \text{ ohne Computer bzw.} \\ &= 2,4 \text{ mit Computer.} \end{split}$$

Die mittlere absolute Abweichung vom Median ist

$$\begin{split} d_{\bar{x}_Z} &= \frac{1}{n} \sum_{i=1}^m h_i(x_i - \bar{x}_Z), \\ &= 1, 25 \text{ ohne Computer bzw.} \\ &= 2, 2 \text{ mit Computer.} \end{split}$$

Aufgabe 3

(11 Punkte)
$$\frac{\text{Tag}}{\text{km/h}(x)} = \frac{1}{15} = \frac{2}{16,5} = \frac{3}{17,5} = \frac{4}{18} = \frac{5}{18} = \frac{6}{18} = \frac{7}{18}$$

a) Arithmetisches Mittel (in km/h):

$$\bar{x} = \frac{15+16,5+17,5+18+18+20+22}{7} = \frac{127}{7} = 18,1429$$

b) Harmonisches Mittel (in km/h):

$$\bar{x}_H = \frac{7}{\frac{1}{15} + \frac{1}{16.5} + \frac{1}{17.5} + \frac{1}{18} + \frac{1}{18} + \frac{1}{20} + \frac{1}{22}} = 17,9037$$

c) Die Durchschnittsgeschwindigkeit erhält man als Quotient aus der gesamten zurückgelegten Strecke und der dafür benötigten Zeit, also

$$\frac{7\cdot 10\text{km}}{^{15\text{km/h}}+\frac{10\text{km}}{16,5\text{km/h}}+\frac{10\text{km}}{17,5\text{km/h}}+\frac{10\text{km}}{18\text{km/h}}+\frac{10\text{km}}{18\text{km/h}}+\frac{10\text{km}}{20\text{km/h}}+\frac{10\text{km}}{22\text{km/h}}}$$

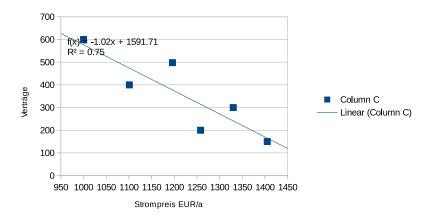
Die Anwendung des harmonischen Mittels ist hier korrekt.

d) Vielleicht!

Aufgabe 4

(28 Punkte)

a) Daten mit Ausgleichsgerade



Anpassung einer Geraden $y=a\cdot x+b$ über lineare Regression: die arithmetischen Mittel sind $\bar{x}=1215$ und $\bar{y}=358$, die Tabelle der benötigter Daten

Preis	Verträge	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$
1000	600	-215	242	-52030	46225	58564
1101	400	-114	42	-4788	12996	1764
1196	498	-19	140	-2660	361	19600
1258	200	43	-158	-6794	1849	24964
1330	300	115	-58	-6670	13225	3364
1405	150	190	-208	-39520	36100	43264

Die Steigung der Geraden ist

$$a = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = -1,02$$

der Achsenabschnitt ist

$$b = \bar{y} - a\bar{x} = 1591,71$$

b) Die erwartete Zahl der Verträge ist bei einem linearen Zusammenhang von $y = 1591, 71 - 1, 02 \cdot x$

$$y(1200) = 367,71.$$

Es werden also etwa 368 Verträge erwartet.

c) der Pearson-Koeffizient ist

$$r_{xy} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = -0,87$$
(2)

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = -0,87$$
 (2)

Der Wert nahe eins legt einen relativ guten linearen Zusammenhang zwischen den Daten nahe.

Aufgabe 5

(22 Punkte)

Ergänzte Tabelle der absoluten Häufigkeiten:

\overline{Y}	1	2	3	4	Summe
X					
1	2	4	1	9	16
2	17	34	10	85	146
3	3	6	2	15	26
Summe	22	44	13	109	188

Die beiden Merkmale sind nicht statistisch unabhängig, da die relativen Häufigkeiten in den Spalten sowie der Randspalte unterschiedlich sind.

Tabelle der relativen Häufigkeiten:

\overline{Y}	1	2	3	4	Summe	
X						
1	1/11	1/11	1/13	9/109	4/47	
2	17/22	17/22	10/13	85/109	73/94	
3	3/22	3/22	2/13	15/109	13/94	
Summe	1	1	1	1	1	

Für die Varianz wir die zweite Zeile der Tabelle benutzt, das arithmetische Mittel ist

$$\frac{1}{n}\sum_{i=1}^{n} y_i = \frac{1}{146}(17 \cdot 1 + 34 \cdot 2 + 10 \cdot 3 + 85 \cdot 4) = 3,12$$

Die Varianz

$$s^{2}(Y|X=2) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

$$= \frac{1}{146} \left(17 \cdot (1 - 3, 12)^2 + 34 \cdot (2 - 3, 12)^2 + 10 \cdot (3 - 3, 12)^2 + 85 \cdot (4 - 3, 12)^2 \right) = 1,27$$

Aufgabe 6

(9 Punkte)

a) Geometrisches Mittel:
$$\bar{x}_G = \sqrt[3]{(1+0,2)\cdot(1+0,15)\cdot(1-0,0005)} - 1 = 9,68\%$$

b) Der Mittelwert berechnet sich nach

$$\bar{x} = \frac{1}{30}(10 \cdot 1 + 11 \cdot 2 + 8 \cdot 3 + 4) = \frac{60}{30} = 2, 0.$$

Für die Kandidaten, die nicht bestanden haben, kann keine Note angegeben werden, sie werden zur Berechnung *nicht* herangezogen.

c) Es wurden insgesamt n=11 Hotels untersucht, auch das Hotel ohne Stern kann mitgezählt werden (es gibt nur die eine Möglichkeit 0). also ist das arithmetische Mittel

$$\bar{x} = \frac{1}{11}(5 \cdot 3 + 2 \cdot 2 + 3 \cdot 1 + 0) = \frac{22}{11} = 2, 0.$$

d) Wenn Ted eine mittlere Geschwindigkeit von 60 km/h fahren will, benötigt er für die insgesamt 8 km Weg eine Zeit von 8/60 h = 8 min. Da er aber für den Rückweg von 4km bereits eine Zeit von 4/30 h = 8min einplant, kann er die geplante Durchschnittsgeschwindigkeit nicht erreichen.