Musterlösung zur Klausur Statistik

WMS11D

Oettinger 06.2011

Zeit: 60Min.

Insgesamt erreichbare Punktzahl: 100.

Aufgabe 1

- (a) Der Median entspricht dem 50%-Quantil, nicht dem 25%-Quantil falsch.
- (b) Für eine unimodale, nicht symmetrische Verteilung gilt stets, dass der Median und der Modus sich unterscheiden falsch.
- (c) Die Varianz kann nur positive Werte annehmen richtig.
- (d) Das arithmetische Mittel kann auch negative Werte annehmen falsch.
- (e) Ein Merkmal ist entweder metrisch oder stetig, d.h. es gibt kein Merkmal, das gleichzeitig metrisch und stetig ist falsch, alle stetigen Merkmale sind metrisch.

Aufgabe 2

5-stellige ID-Nummern für den neu gegründeten Paketdienst, Berechnung unter der vereinfachenden Annahme, dass auch 00000 als ID-Nummer zulässig sein soll:

(a) Jede beliebige Farbe.

- (b) Anzahl A aller möglichen Kombinationen für 5-stellige Nummern: Jede Stelle kann mit $0\dots 9$ besetzt werden. $A=10^5$ (unter der Annahme, dass auch 00000 als ID-Nummer zählt).
- (c) Soll keine Nummer mit einer Null beginnen, gibt es für die erste Stelle nur 9 Möglichkeiten (1...9). $A = 9 \cdot 10^4$.
- (d) Keine Ziffer soll zweimal vorkommen (Berechnung unter der Annahme, dass eine führende Null erlaubt ist): für die erste Stelle gibt es 10 Möglichkeiten,

für die zweite 9,

für die dritte 8 usw.

$$A = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 30240$$

Aufgabe 3

Die Summe der Vorfälle ist 63, n = 7 und damit

$$\bar{x} = 63/7 = 9.$$

Zur Bestimmung des Medians werden die Daten in Form eines geordneten Vektors dargestellt:

$${x_i} = (5, 7, 7, 8, 11, 12, 13)$$

Der Median \bar{x}_Z ist der Wert x_4 , also $\bar{x}_Z = 8$.

Die Varianz berechnet sich wie folgt:

$$s_x^2 = \frac{1}{7}(5^2 + 7^2 + 7^2 + 8^2 + 11^2 + 12^2 + 13^2) - 9^2$$

= 7,714,

damit ergibt sich die Standardabweichung

$$s_x = |\sqrt{s_x^2}| = 2,777$$

und der Variationskoeffizient

$$v_x = \frac{s_x}{\bar{x}} = \frac{2,878}{8} = 0,309.$$

Die Daten lassen sich über die Variationskoeffizienten vergleichen (keine Berechnung gefordert: der Variationskoeffizient der weltweiten Daten ist $v_y=0,214$).

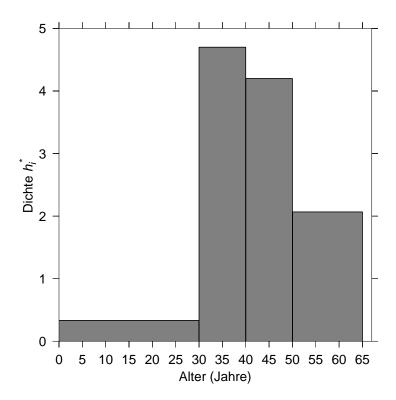
Aufgabe 4

a) Die beiden Merkmale sind nicht statistisch unabhängig, da die relativen Häufigkeiten in den beiden Spalten sowie der Randspalte unterschiedlich sind.

Geschlecht	interessiert	nicht interessiert	Summe
männlich	1/8	1/4	1/5
weiblich	7/8	3/4	4/5
Summe	1	1	1

b) statistisch unabhängig:

		0.0		
	Geschlecht	interessiert	nicht interessiert	
٠	männlich	5	15	•
	weiblich	20	60	
	Geschlecht	interessiert nicht interessiert		Summe
		f_i	f_{i}	f_i
	männlich	1/5	f_i 1/5	1/5
	männlich weiblich	-	* '	-
		1/5	1/5	1/5


Aufgabe 5

Daten zur Altersverteilung:

Alter in Jahren	Absolute	relative	kumulierte rel.	Klassenbreite	Dichte
von bis unter	Häufigkeit	Häufigkeit f_i	Häufigkeit F_i	Δ_i	$h_i^* = h_i/\Delta_i$
bis 30	10	0,076	0,076	30	0,333
30 - 40	47	0,362	0,438	10	4,7
40 - 50	42	0,323	0,761	10	4,2
50 -65	31	0,238	1	15	2,067

(a) Histogramm der Altersverteilung:

Altersverteilung

(b) Berechnung des Durchschnittsalters (in Jahren):

$$\bar{x} = \frac{1}{130}(10 \cdot 15 + 47 \cdot 35 + 42 \cdot 45 + 31 \cdot 57, 5) = 42,06$$

(c) Berechnung des Medians:

50% der befragten Personen werden in der 3.Klasse erreicht. Der Median lässt sich also wie folgt berechnen:

$$F(\bar{x}_Z) = x_3^u + (x_3^o - x_3^u) \frac{F(\bar{x}_Z) - F(x_3^u)}{F(x_3^o) - F(x_3^u)} = x_3^u + (x_3^o - x_3^u) \frac{F(0, 5) - F(x_3^u)}{F(x_3^o) - F(x_3^u)}$$

$$40 + 10 \cdot \frac{0, 5 - 57/130}{(99 - 57)/130} = 40 + 10 \cdot \frac{8}{42} = 41, 9$$

Aufgabe 6

Geeignete Mittelwerte.

1. Eine Stunde 50 km/h, 1 Stunde und 15 Minuten 40 km/h. Die Gesamtzeit sind 2 Stunden und 15 Minuten, die zurückgelegte Strecke $s=1\text{h}\cdot50\text{km/h}+1,25\text{h}\cdot40\text{km/h}=100\text{km}.$ Durchschnittsgeschwindigkeit in km/h:

$$\bar{v} = \frac{100}{2.25} = 44, \bar{4}.$$

Das ist das harmonische Mittel der Geschwindigkeiten (in km/h):

$$\bar{v} = \frac{1}{1/2(\frac{1}{50} + \frac{1}{40})} = 44, \bar{4}$$

2. Geometrisches Mittel:

$$\bar{x}_G = \sqrt[3]{(1+0,1)\cdot(1+0,15)\cdot(1-0,0005)} - 1 = 8,13\%$$

3. Insgesamt befragte Personen: 100 + 1000 = 1100. Für die Abschaffung sind 60 + 380 = 440. Also sind 440/1100 = 40% dafür.

Aufgabe 7

Nominale/ordinale/kardinale Merkmale:

- (a) Körpergröße: kardinal
- (b) Farbe: nominal
- (c) Felgengröße: kardinal
- (d) Qualität von Vorlesungen: ordinal